Calculus Test #4 - Chapter 4

(practice)

Name	pd.:	
------	------	--

Mrs. Robertson

PART 1

Date: ____

You must show COMPLETE CALCULUS WORK on ALL PROBLEMS to verify your answers. Please CIRCLE your final answers.

- 1.) Given: $f(x) = x^3 x^2 x + 2$ answer the following questions.
- a.) Find all critical numbers, if there are any.
- b.) Find the intervals on which the function is increasing and/or decreasing.
- c.) Find all local maxima and/or minima, if any. If there are none, state why.
- d.) Find all points of inflection, if any. If there are no points of inflection, state why.
- e.) Determine the intervals on which the function is concave up and/or concave down.

2. Find the number c in the fu	nction that satisfies the conclusion of the MVT on the given interval.
$f(x) = x^2 - 5x - 2,$	[0, 2]

3. Suppose the derivative of a function f is given as: $f'(x) = x^2 - 6x + 8$. On what interval(s) of x is f increasing and/or decreasing?

4. Given:
$$f(x) = 5 - 2\cos x + \frac{3}{x}$$

(a) Find the general antiderivative.

(b) Check your answer by differentiation.

- 5. The acceleration of a particle that is moving in a straight line is given by $a(t) = 3\cos t 2\sin t$.
- (a) Find the velocity function, v(t), and (b) the position function, s(t) given that v(0) = 4 and s(0) = 0.

6. Given: f''(x) = 4x - 2 (a) Find f'(x) = 9 and (b) Find $f(x) = \frac{14}{3}$

Use L'Hopital's Rule (if necessary) to find:

$$7. \lim_{x\to 0} \frac{x^2}{1-\cos x}.$$

8.
$$\lim_{x \to \infty} \frac{x^5 - 1}{x^6 - 1}$$

- 9. A box in the shape of a rectangular prism has a surface area of $16,000 \text{ cm}^2$ where the width and the height are equal (see the picture below).
- (a) Find the dimensions that would maximize the volume of the box.
- (b) What is the maximum volume of the box?

 $(\omega = h)$

Hint: The left & right end faces are equal. The top, bottom, front & back faces are equal: Surface Area = 2w + 4lw

Mrs. Robertson Spring 2019